

The High Level Architecture Functional Class Middleware

(HLAfc) Technical Introduction

by Geoffrey C. Sauerborn

ARL-TR-3146 April 2004

Approved for public release; distribution is unlimited.

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position
unless so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official endorsement or
approval of the use thereof.

DESTRUCTION NOTICE Destroy this report when it is no longer needed. Do not return it to the
originator.

Army Research Laboratory
Aberdeen Proving Ground, MD 21005-5066

ARL-TR-3146 April 2004

The High Level Architecture Functional Class Middleware

(HLAfc) Technical Introduction

Geoffrey C. Sauerborn
Weapons and Materials Research Directorate, ARL

Approved for public release; distribution is unlimited.

ii

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data
needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the burden,
to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302.
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid
OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

 April 2004
2. REPORT TYPE

Final
3. DATES COVERED (From - To)

 October 2003 to March 2004
5a. CONTRACT NUMBER

5b. GRANT NUMBER

4. TITLE AND SUBTITLE

 The High Level Architecture Functional Class Middleware (HLAfc)
 Technical Introduction

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

 621618H80

5e. TASK NUMBER

6. AUTHOR(S)

 Geoffrey C. Sauerborn (ARL)

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

 U.S. Army Research Laboratory
 Weapons & Materials Research Directorate
 Aberdeen Proving Ground, MD 21005-5066

8. PERFORMING ORGANIZATION
 REPORT NUMBER

 ARL-TR-3146

10. SPONSOR/MONITOR’S ACRONYM(S) 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

11. SPONSOR/MONITOR’S REPORT
 NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.
13. SUPPLEMENTARY NOTES

14. ABSTRACT

“Middleware” is a term used for a software library specifically designed to act as an agent (or a software layer that stands
logically) between distinct systems (e.g., between a final user application and a targeted service such as a network
communication protocol). Adding another layer of software will never increase execution speed; therefore, the benefits must
outweigh this (possibly slight) penalty. Some middleware benefits over a targeted service could include portability, easing
migration to other services, simplicity, software readability, maintainability, having an abstracted centralized area for error
handling, data translation, “bookkeeping” tasks, and other required maintenance.

This report introduces a middleware for the U.S. Department of Defense and the Institute of Electrical and Electronics Engineers
modeling and simulation high level architecture. The middleware is often described through the use of illustrations (small
software examples). Yet, this description remains at a technically high point of view and is not intended as a programmer
manual. The middleware’s chief features are highlighted, and comparisons are made with other approaches to middleware.

15. SUBJECT TERMS

 distributed simulation; lethality; simulation interface; vulnerability

16. SECURITY CLASSIFICATION OF:
19a. NAME OF RESPONSIBLE PERSON
 Geoffrey C. Sauerborn

a. REPORT

Unclassified
b. ABSTRACT

Unclassified
c. THIS PAGE

Unclassified

17. LIMITATION
OF ABSTRACT

UL

18. NUMBER
OF PAGES

20 19b. TELEPHONE NUMBER (Include area code)
 410-278-8657

 Standard Form 298 (Rev. 8/98)
 Prescribed by ANSI Std. Z39.18

iii

Contents

List of Figures iv

List of Tables iv

1. Introduction 1

2. Background 1

3. Description 3

4. Comparison With Other Middleware Features 4
4.1 Condensed List of Other Features ...5
4.2 System Requirements ..6
4.2.1 Language and Operation System...6
4.2.2 HLA RTI Support..6
4.3 Recommended Programming Experience ...6
4.4 Complex Data Types ...7

5. Summary 7

6. Conclusion 8

7. References 9

Appendix A. FOM_Object Class Member List 11

Distribution List 17

iv

List of Figures

Figure 1. The “car” object model..3
Figure 2. HLAfc minimal C++ coding implementation example...3
Figure 3. Example of applying RTI object handles to HLAfc updates. ...5

List of Tables

Table 1. DMSO-certified HLA-compliant HLAfc federates..2
Table 2. Examples of other HLA implementations with HLAfc..2
Table 3. HLAfc key features...5

v

Acknowledgments

The author wishes to express grateful acknowledgment to MyVan H Baranoski of the U.S. Army
Research Laboratory (ARL), who was this report’s technical reviewer and provided some
feedback during early development (while working on the ground vehicle dynamics model).
Similarly, Richard Pearson, also of ARL, is thanked for his innovative dynamic system
“Goodbye World” that was also used in HLAfc early tests as well as for his diligent work on the
combat vehicle engineering simulation high level architecture port.

vi

INTENTIONALLY LEFT BLANK

1

1. Introduction

This document describes a simulation service “middleware” that supports the Department of
Defense (DoD) high level architecture (HLA). This middleware stands “in the middle” as a
functional class between the HLA run time infrastructure (RTI) and an application. We refer to
this middleware as the HLA functional class (HLAfc) because it provides almost all the func-
tionality of the underlying HLA services while making HLA extremely simple to implement.

HLAfc’s origins, its advantages, and how it has been used, are described. Some comparisons are
made with similar services (other types of middleware architectures). This is approached from a
technically high level and therefore not suitable or intended as an applications programmer
manual for using HLAfc.

2. Background

HLAfc was developed by the author while he was supporting the U.S. Army’s Developmental
Test Command’s Virtual Proving Ground (VPG) at the U.S. Aberdeen Test Center. At the time,
the U.S. Army Research Laboratory (ARL) was providing an HLA component version of an
Army engineering-level simulation of combat vehicles. This simulation was the combat vehicle
engineering simulation (CVES), and its primary purpose was to simulate a vehicle’s ballistic fire
control (1,2). CVES’s HLA representation was divided into segments (individual HLA
federates) that reflected the simulation’s natural internal logical organization. This meant
creating separate HLA federation simulation components to represent the vehicle’s hull, turret,
gunner (target tracker), etc. A total of eight federates comprised the whole CVES HLA
federation (3,4). An advantage of this approach was that one could incorporate different fire
control computers, vehicle suspension systems, or other components into the system simply by
switching the component in question, which would result in a “composible” architecture for fire
control systems.

Though powerful in combination, the HLA RTI application program interface (API) functions
are relatively elementary services (5). To organize these service calls into a viable HLA federate
(simulation component) requires numerous accounting and other overhead operations not
provided in the base RTI APIs. The purpose of HLAfc then was to implement these overhead
operations (creating, joining or leaving the HLA simulation exercise, tracking subscribed
simulation data, providing updates, etc.). HLAfc has been very successful in accomplishing
these objectives. The result for CVES was that each of the eight simulation components could
then be made to be HLA federates without anyone having to re-engineer these overhead

2

operations. Furthermore, because HLAfc was to implement this capability in a manner that did
not presuppose the composition of the HLA federation (the object model), it therefore could be
re-used to implement any future HLA federate. As we will see in section 3, writing an HLA
application can now be a relatively simple process through the use of the HLAfc middleware.

With HLAfc, CVES achieved official Defense Modeling and Simulation Office (DMSO) HLA-
compliance HLA certification in 21 March 2001 for all its component federates (these are named
in table 1).

Table 1. DMSO-certified HLA-compliant HLAfc federates.

Certified Federate Name
VPG CVES Blue (vehicle target space position information) Platform
VPG CVES Wheel Platform
VPG CVES Platform Dynamics
VPG CVES Turret Platform
VPG CVES Red (target) Platform
VPG CVES Gun Platform
VPG CVES Hardware (fire control computer) Platform
VPG CVES Human (target tracking system) Platform

HLAfc has made other applications HLA compliant and been tested with various other
experimental, as well as “production”, HLA object models. Some of these are shown in table 2.
In particular, the real-time platform-level federation object model (RPR-FOM) (6) and modeling
architecture for technology and research experimentation (MATREX) (7) federations are large
and fairly complex object models attesting to HLAfc’s flexibility and robust nature.

Table 2. Examples of other HLA implementations with HLAfc.

FOM Name Description
HelloWorld An HLAfc version compatible with the “HelloWorld” sample program distributed with

the DoD RTI versions.
GoodByeWorld As with HelloWorld, this is a sample application. It was developed by Richard

Pearson, ARL. The GoodByeWorld consists of two federates: one increasing
population with time (as does HelloWorld), and a second that dynamically introduces
plagues that reduce the population of the first.

GVDM Ground Vehicle Dynamics Model. An ARL HLA-wrapped integration of DADS
(vehicle dynamics simulation system) and compact terrain data base (CTDB)
formatted terrain data (via ModSAF CTDB terrain libraries). HLA was later dropped
from this project.

EntityBridge A bridge between distributed interactive simulation (DIS) (8) and HLA created for a
subset of the RPR-FOM. This bridge communicates the basic DIS PDUs: EntityState,
Fire, and Detonation.

RPR-FOM RPR-FOM is a distributed interactive simulation (DIS) protocol mapping to an HLA
FOM. RPR-FOM was applied for the ARL table lookup vulnerability/lethality server.
A second HLA federate was quickly generated with HLAfc to monitor mobility data
from the Tank-Automotive and Armaments Command’s vehicle dynamics mobility
server (VDMS) during Research, Development, and Engineering Center federation
experiments (2001).

MATREX V0.5 Lethality/vulnerability server (9)

3

Reducing the time needed to create an HLA-compliant application and being able to re-use a
swift HLA integration capability repeatedly and consistently were the primary motivations for
developing HLAfc.

3. Description

HLAfc makes it very easy for an application to become HLA compliant. Given a FOM and an
operational code, an application can become HLA compliant literally by the addition of just a
few lines of code. (Of course, the total lines of code depend on the number of RTI exchanges
planned.) For a simple example, assume that an object model of a “car” object exists and that
object has an attribute “color” as portrayed in the object class hierarchy shown in figure 1.

Figure 1. The “car” object model.

If the “car” object model were an HLA FOM, then the following C++ code segment portrayed in
figure 2 would assign a value to “color” and publish that information to the RTI, making it
available to all other HLA execution federates.

#include <HLAfc.hh> // required header file
. // dots represent ancillary C++
. // code needed to complete a
. // syntactically complete
. // program (not shown)

FOM_Object hla_fc(“CarFOM.HLAfc”); // initialize HLAfc

hla_fc.rtiSetObjectAttributeValue(“Car”,”Color”, ”Red”); // set value
hla_fc.rtiUpdate(); // publish that data to the HLA federation.

Figure 2. HLAfc minimal C++ coding implementation example.

4

HLAfc executes the required HLA RTI protocol operations (“hand shaking”), data marshaling/
de-marshaling, and (eventual) “graceful” (proper) resignation from the federation execution. Of
course, HLAfc can do much more than portrayed in figure 2.

4. Comparison With Other Middleware Features

Most code generators will consume an object model and produce code header information or
outright classes that reflect the name space and object hierarchy for that given object model.
Function calls (or methods) are “stubbed out”.1 A programmer then starts with these prototyped
methods and fills them with behavior code.

HLAfc differs in this approach in that the behavior code remains in the user’s original appli-
cation. That is, an existing program does not have to be changed very much to communicate
with other HLA applications. Instead of filling stubbed out behavior code, the user application
interfaces with HLAfc to send (set) or receive (get) these exposed data when they are needed.2

This approach frees the user application from having to become too embedded to a particular
external communications protocol (such as HLA, DIS, COM, etc.). External variable names and
the objects to which they belong may be referenced by text strings that correlate to the object
model components. (This was seen in figure 2 where “car” and “color” were applied during the
“rtiSetObjectAttributeValue()” method invocation.) Alternatively, these object model components
may be referenced by RTI handles (integers), thus providing greater efficiency and speed. (For
example, integer variables that represent “car” and “color” are substituted for the text strings.)
This is shown in the “rtiSetObjectAttributeValue()” invocation seen in figure 3.

Integer operations (RTI handles) have much less overhead and will therefore allow the final
application to run faster. This efficiency comes at a slight administrative cost in that the user’s
application will be responsible for obtaining (done once) and then keeping track of those RTI
handles as shown in figure 3. (In this example, the application ought to ensure that the object
and attribute handle variables [“objHandle” and “atrHandle”] remain in scope in case this section of
code is re-entered. Doing so will prevent our having to re-assign these handles. In a similar
vein, the hla_fc object shall be instantiated only once and then used throughout the program. In
fact, if hla_fc falls out of scope, the federate will resign (leave) the HLA execution.) Note the
“RTI::” class data types (i.e., RTI::ObjectClassHandle and RTI::AttributeHandle) are the HLA native
data types defined inside the HLA RTI distribution (10) and are not HLAfc-defined objects.

1“Stubbed out”: the method’s name is prototyped, but code within that method is left blank.
2As a convenience, HLAfc code generates classes for enumerated data types along with legal values, but their implementation

in the user’s application is not a requirement in order to use HLAfc.

5

#include <HLAfc.hh> // required header file
. // dots represent ancillary C++
. // code needed to complete a
. // syntactically complete
. // program (not shown)

FOM_Object hla_fc(“CarFOM.HLAfc”); // initialize HLAfc

RTI::ObjectClassHandle objHandle; // will replace “Car”
RTI::AttributeHandle atrHandle; // will replace “Car.Color”

objHandle = hla_fc.getObjectClassHandle(“Car”);
atrHandle = hla_fc.rtiGetAttributeHandle(“Car”, “Color”);

hla_fc.rtiSetObjectAttributeValue(objHandle, atrHandle, ”Red”); // set

hla_fc.rtiUpdate(); // publish that data to the HLA federation.

Figure 3. Example of applying RTI object handles to HLAfc updates.

4.1 Condensed List of Other Features

Table 3 provides a few of HLAfc’s highlighted features.

Table 3. HLAfc key features.

Feature Description
Simplicity
of use

HLAfc is intuitive. In its basic form, HLAfc distills to simple “set” (or “get”) API calls to assign (or
retrieve) HLA data.

Develop-
ment speed

As figure 2 demonstrated, it takes little time for an application programmer to comply with the HLA
specification.

FOM
persistence

Once the middleware has included a FOM, it stays resident. This means that there is no need to
recompile when one is switching from one FOM to another, if such a need arises.

Configura-
tion file
(.HLAfc
file)

A single configuration file determines which federation is to be subscribed to (federation name), the
federate’s name, federation (.fed file), as well as subscribed objects (those HLA objects that will be
published or subscribed to by the federate application).

• Most of this configuration file is auto-generated when the FOM is “read” (or consumed) by
HLAfc. (The consumption process is not within the scope of this document.)

Error
handling

Generous application of useful error handling such as
• Attempts to publish or subscribe to objects not in the FOM.
• FOM type checking (write): e.g., attempts to send a random data stream that would overflow

a known object length. (This type of checking is a compilation option that may be turned off;
default is ON.)

• FOM type checks (read): received data that would overflow an object are truncated and noted
as errors.

• Warnings for truncated objects: if a data structure of a known length is received with a lesser
size.

• Many more types of errors.
• Because of HLAfc’s data length checking, one may find many types of FOM interface errors

over the whole HLA federation execution simply by subscribing to all HLA objects and

6

listening without further action necessary. When a rogue federate overflows (or truncates) any
object’s data field, HLAfc will immediately report this and do its best to identify the offending
federate application.

Configu-
rable
Logging

Automatically log any HLA incoming or outgoing traffic (see the rtiVerboseLogIO() method).
(Current format is intended for manual review and not designed as a log file for a playback
operation.)

Data Com-
munications
flexibility

Once data are passed to HLAfc, they handle any “on-the-wire” standards (such as network byte
ordering). XDR (11) data representation is the default (but may be turned off with a compile
option). The numeric data-type network byte-ordering subset of XDR will remain.

More
Debugging
utilities

Trace calls to internal HLAfc methods, tunable verbosity of the data trace and debug output (via
rtiVerbose(), rtiVerboseTrace() methods) (though many of these will only be useful to an
experienced HLA programmer).

Maximum
flexibility

An experienced HLA programmer can go beyond the basics if needed. Callbacks (for object
discovery), and other resources that tap many of the most used RTI services are available and seen
in appendix A. If any HLA service is needed, one may access it by obtaining and applying the
Federate Ambassador and RTI Ambassador pointers to the joined federation’s execution:
 extern rtiFC_FederateAmbassador fedAmb;//fed<--RTI
 extern RTI::RTIambassador rtiAmb; //fed -->RTI
fedAmb is used by the RTI to communicate to the user’s applications, where rtiAmb is used by the
application program to send data to the RTI. (See reference 10, appendices A and B)

4.2 System Requirements

4.2.1 Language and Operation System

HLAfc is a C++ compiled library. (There are currently no JAVA3 or other language bindings.)
Its currently maintained version is compiled with the GNU (Gnu’s Not Unix) C++ 3.2.2
compiler on RedHat Linux 9.0. It has worked in the past with the Silicon Graphics, Inc. (SGI)
MIPS3pro C++ compiler, under IRIX (an SGI UNIX-like operating system).

4.2.2 HLA RTI Support

HLAfc has also been tested to support

 • RTI-1.3NGjvbV3b1 (RTI NG-PRO from Virtual Technology Corporation
incorporated into the joint virtual battlespace and MATREX federation).

 • RTI 2.0.1ngc, from MaK3 Technologies

 • DMSO RTI-NG1.3v64

4.3 Recommended Programming Experience

As figures 2 and 3 demonstrated, programs can be straightforward. To access more powerful
features, more programming experience will be needed. However, any C++ programmer with a

3Not an acronym.
4HLAfc supports all versions of the DMSO-distributed HLA RTI distributions but is maintained under DMSO RTI-NG1.3v6.

7

few months’ experience should be able to very quickly implement at least a basic HLA program
using HLAfc.

4.4 Complex Data Types

HLAfc is able to pass and receive complex data structures. Notice in figures 2 and 3 that a string
value was published (“Red”). HLAfc knew to expect a string because the data element
Car.Color was defined as a string data type in the federation object model depicted in figure 1.
As previously mentioned, HLAfc consumes the HLA standard object model template (OMT)
stored in the standard HLA 1.3 OMT data interchange format (DIF). The OMT defines all data
types including complex (user-defined) types. Complex data structures also may be passed to or
read from the RTI. However, the user application must first serialize the data. This process
removes any byte padding or other alignments. To continue with our example, suppose that the
“car” object’s attributes were defined in one complex data structure containing the same types
seen in figure 1 (a variable length null-terminated string, an array of three doubles, and an array
of three floats, in that order). Then the application must first store these three values into a
buffer (the null-terminated string, followed immediately by the three 32-bit floating point array
values, and finally the three 64-bit double precision floating point values). Once these are placed
(in this order) into the buffer, a pointer to that buffer is passed as the third parameter to the
rtiSetObjectAttributeValue() call. Of course, the first two parameters would indicate the object and
attribute name of this hypothetical complex data type. HLAfc will recognize that this object
model component name is associated with a complex data type and will internally marshal the
data for any “on-the-wire” standards (such as converting the null-terminated “C” string into an
XDR string, byte ordering the arrays of doubles and floats, etc.).

On the receiver end, HLAfc will reverse any “on-the-wire” standards and return a buffer
containing the serialized data in host computer format (via the rtiGetObjectAttributeValue() method
call). The receiving user application must then extract these serialized data from the returned
buffer. HLAfc can service any complex data type, but there is currently no provision for data
structures of unknown length (except for variable length strings).

5. Summary

HLAfc has been introduced. Motivations for having a middleware such as HLAfc, its particular
origins, and how it has already been applied were provided. Among HLAfc’s chief advantages
are the speed and simplicity at which a useful HLA application-level program may be generated.
HLAfc abstracts data apart from the code generation process and applies a series of “set” and
“get” operations to interface exposed HLA data. This is a different approach from other code-
generation-based middleware architectures.

8

While this is not a programmer’s manual, a simple use case has been provided to allow technical
evaluators a first look into how this middleware can be applied at the application level and to
make some preliminary evaluations.

6. Conclusion

HLAfc’s demonstrated ability to service a broad range of HLA federation object models
authenticates its robust nature. Object model data abstraction provides a highly flexible and
simplified interface based on “set” and “get” APIs. This approach can allow extreme speed in
HLA compliance.

Data abstraction from the code also allows powerful flexibility. For example, if desired, a
simulation could switch to other object models and yet have its code base remain basically
unchanged (by the object names being changed at the application layer, provided the new object
name maps usage and data type between the two FOMs).

Despite its success, HLAfc still has some limitations, the greatest of which being there is
currently no provision for data structures of unknown length. Less elegant (than being imbedded
within HLAfc) “work-arounds” are available, but these require preconceived knowledge of how
the FOM intends to communicate the actual length of the data structures sent and received.
Therefore, the solution in this case remains at the application level (negating the reason for
having a middleware for such structures). However, HLAfc does provide “hooks” into the native
HLA interface for such circumstances.

9

7. References

1. Corcoran, P. E. Gunner Tracking Models for the BFVS-A3 Combat Vehicle Engineering
Simulation; ARL-TR-2588; U.S. Army Research Laboratory: Aberdeen Proving Ground,
Maryland, November 2001.

2. Corcoran, P. E. Gunner Tracking Models for the M1A1 Combat Vehicle Engineering
Simulation; ARL-TR-1984, U.S. Army Research Laboratory: Aberdeen Proving Ground,
Maryland, May 1999.

3. Pearson, R. J.; Sauerborn, G. C.; Kenrick C. Lessons Learned Migrating Legacy Engineering
Models to the HLA (CVES a Case Study), Simulation Interoperability Standards
Organization (SISO), Spring 1999 Simulation Interoperability Workshop (SIW) Workshop
Papers", March 1999.

4. Pearson, R. J.; Sauerborn, G. C., Kenrick C. Migration of Legacy Engineering Models to a
High Level Architecture (HLA) Simulation, International Test & Evaluation Association,
published in Proceedings of the 3rd Modeling and Simulation Workshop - Establishing
Seamless Distributed and Integrated Solutions to Real-World Challenges, December 1998.

5. IEEE Computer Society, IEEE Standard for Modeling and Simulation (M&S) High Level
Architecture (HLA) Federate Interface Specification; IEEE Std 1516.1-2000, Institute of
Electrical and Electronics Engineers (IEEE), 21 September 2000.

6. Fischer, J.; Case, R.; Bertin, R. Eds. Guidance, Rationale, and Interoperability Manual for
the Real-time Platform Reference Federation Object Model (RPR FOM), Version 2.0D14v2,
SISO, 11 March 2002.

7. Joint Precision Strike Demonstration Office (JPSD), Modeling Architecture for Technology
and Research EXperimentation (MATREX) System Architecture Description, Coordination
Draft, V0.8, JPSD, Ft. Belvoir, Virginia, May 15, 2003.

8. IEEE Computer Society, IEEE Standard for Distributed Interactive Simulation; IEEE Stds
1278.1, 1278.2, 1278.4, 1278.5; IEEE 1995, 1996, 1997, 1998.

9. Sauerborn, G.C.; Christy, T.S. Lethality/Vulnerability Server Functional Description and
Interface Control Document for MATREX V0.5; ARL-MR-0582; U.S. Army Research
Laboratory: Aberdeen Proving Ground, MD, March 2004.

10. Department of Defense, High Level Architecture Run-Time Infrastructure Programmer’s
Guide, 1.3 Version 4, DoD Modeling and Simulation Office, 21 September 1998.

11. Network Working Group, XDR: External Data Representation Standard, Sun Microsystems,
Request for Comments (RFC-1014), June 1987.

10

INTENTIONALLY LEFT BLANK

11

Appendix A. FOM_Object Class Member List

This appendix contains a condensed listing of the names of most HLA APIs services available
through the FOM_Object class (HLAfc’s interface class). The list is provided in alphabetical
order for informational purposes as opposed to programming instructions. As such, and keeping
with the intent of this text, detailed API explanations, returned values, exceptions to handling
and proper usage are not provided in this condensed listing. Most of the internally used (private
and static) methods are listed first (the majority of whose names start with the underscore “_”).
In practice, user applications will never invoke these methods. A typical application will confine
itself to those methods whose names start with “rti” in lowercase (e.g., rtiUpate() ,
rtiSetObjectAttributeValue(), rtiGetObjectAttributeValue(), etc.).

Other items that will not be needed by most applications are the SOM_Object and
SOM_Interaction classes. These are used internally to handle HLA attributes and parameters
and are therefore not documented in this listing.

The other notable set of classes not documented are native HLA RTI implementation classes (the
“RTI::” classes, i.e., RTI::ObjectClassHandle and RTI::AttributeHandle). These are the HLA
native data types defined inside the HLA RTI distribution (5, 10) and are not HLAfc-defined
classes.

This is the complete list of members for FOM_Object, including all inherited members.

12

Method or object name

Exposure
or

compile
option

__create_new_fom_object(RTI::ObjectClassHandle theObjectClass) [static]
__create_new_fom_object(RTI::ObjectClassHandle theObjectClass, SOM_Object
**newSomPtr) [static]

__getFederateLocalTime_non_RTI_time()
__getsim(const char *nm) [inline, private]
__set_som_object_as_local_object(SOM_Object *newSom) [static]
__set_som_object_as_remote_object(SOM_Object *newSom) [static]
_currentTime [private]
_Federation_RTI_FedFileName [private]
_FederationName [private]
_get_fom_of_exactly_one_atrib_Remote(const char *ObjName, const char *AttrbName) [private]
_get_sim_of_exactly_one_param(RTI::InteractionClassHandle ParamHandle, SOM_Interaction
**asim, const char **errmsg) [private]

_get_sim_of_exactly_one_param(const char *Pname, SOM_Interaction **asim, const char
**errmsg) [private]

_get_som_of_exactly_one_atrib(const char *AttrbName, SOM_Object **asom, const char
**errmsg) [private]

_get_som_of_exactly_one_atrib(RTI::AttributeHandle AttrbHandle, SOM_Object **asom,
const char **errmsg) [private]

_get_som_of_exactly_one_atrib_Remote(const char *ObjName, const char *AttrbName) [private]
_getActiveFOM_Object() [inline, private]
_HLAfc_ObjectMode_Name [private]
_HlaObjNameCmp(const char *a, const char *b) [private]
_lookaheadTime [private]
_rtiFOM_Object_Internal_numberOfInternalSOMs() [inline]
_rtiFOM_Object_Internal_SOM_interateNext(int i) [inline]
_rtiFOM_Object_Internal_soms_getbyclass_Remote(RTI::ObjectClassHandle classHandle) [inline]
_rtiProvideAllObjectInstacesRemote(bool getAll, RTI::ObjectHandle getJustThisType) [private]
_rtiUtilNameIsInList(const char *objNm, const char *object_names[])
_rtiWaitForAtributeUpdatesStart(const char *ClsNm, const char *attibnames[], float
small_tick_time_slice)

_sims_add(SOM_Interaction *n) [inline]
_sims_create() [inline]
_sims_get(const char *nm) [inline]
_sims_getbyclass(RTI::InteractionClassHandle classHandle) [inline]
_sims_geti(int i) [inline]
_sims_getParam(RTI::ParameterHandle ph) [inline]
_sims_getParam(const char *pname) [inline]
_sims_size() [inline]
_soms_add(SOM_Object *n) [inline, private]

13

_soms_create() [inline, private]
_soms_delete(RTI::ObjectHandle instanceID) [inline, private]
_soms_delete_all() [inline, private]
_soms_get(const char *nm) [inline, private]
_soms_get(RTI::ObjectHandle Objeect_Instance) [inline, private]
_soms_getAtrib(const char *name) [inline, private]
_soms_getAtrib(RTI::AttributeHandle ah) [inline, private]
_soms_getbyclass(RTI::ObjectClassHandle classHandle) [inline, private]
_soms_getbyclass_Remote(RTI::ObjectClassHandle classHandle) [inline, private]
_soms_getbyName_Local(const char *nm) [inline, private]
_soms_getbyName_Remote(const char *nm) [inline, private]
_soms_getbyName_Template(const char *nm) [inline, private]
_soms_geti(int i) [inline, private]
_soms_size() [inline, private]
add_to_list(FOM_Object *it) [inline, private]
allobjects [private, static]
ascii()
ascii_Interaction(const char *interactionName)
ascii_Interactions()
federate_name [private]
federateId [private]
FOM_Object()
FOM_Object(const char *SOMfileAtrributes)
fom_object_zero() [private]
getFederatation_RTI_FedFileName()
getFederateID() [inline]
getFederateName() [inline]
getFederationName() [inline]
getFOM_Object(RTI::ObjectClassHandle theObjectClass)
getFOM_ObjectInstance(RTI::ObjectHandle object_id)
getHLAfcObjectModelName() [inline]
getObjectAttributeClassHandle(const char *AttribName)
getObjectAttributeName(RTI::AttributeHandle objID)
getObjectAttributeName(RTI::ObjectClassHandle objID, RTI::AttributeHandle atrID)
getObjectClassHandle(const char *ObjectClassName)
getOwningFederate(RTI::ObjectHandle instanceID)
getSOM_Interaction(RTI::InteractionClassHandle thisClass)
getSOM_InteractionReference(const char *nm) [inline]
getSOM_ObjectReference(RTI::ObjectClassHandle thisClass)
getSomObject(RTI::ObjectHandle object_id)
init_DoesNextTokenStartAnInteractionClass(FILE *) [private]
init_DoesNextTokenStartAnObjectClass(FILE *) [private]

14

isRemoteObject
name() [inline]
object_count [private, static]
printAllKnownFOMObjects()
rtiCreateAndRegisterObjectInstance(const char *ObjectClassName)
rtiDeleteFederate(RTI::ObjectHandle instanceID) [inline]
rtiGetAttributeHandle(const char *ClassName, const char *AttributeName)
rtiGetInteractionClassHandle(const char *theInteractionClassName)
rtiGetInteractionClassName(RTI::InteractionClassHandle theInteraction)
rtiGetInteractionHandle(const char *ClassName)
rtiGetInteractionParameterValue(const char *paramName)
rtiGetInteractionParameterValue(const char *InteractionClassName, const char
*parameterName)

rtiGetInteractionParameterValue(const char *parameterName, int *len)
rtiGetInteractionParameterValue(const char *InteractionClassName, const char
*parameterName, int *len)

rtiGetObjectAttributeCardinality(const char *objName, const char *atribName)
rtiGetObjectAttributeValue(const char *atribName)
rtiGetObjectAttributeValue(const char *atribName, int *length)
rtiGetObjectAttributeValue(const char *objName, const char *atribName)
rtiGetObjectAttributeValue(const char *objName, const char *atribName, int *length)
rtiGetObjectAttributeValue(RTI::ObjectHandle instanceID, RTI::AttributeHandle Ah)
rtiGetObjectAttributeValue(RTI::ObjectHandle, const char *AttributeName)
rtiGetObjectAttributeValue_Local(const char *atribName)
rtiGetObjectAttributeValue_Local(const char *atribName, int *length)
rtiGetObjectAttributeValue_Local(const char *objName, const char *atribName)
rtiGetObjectAttributeValue_Local(const char *objName, const char *atribName, int *length)
rtiGetParameterHandleHandle(const char *ClassName, const char *ParameterName)
rtiJoinFederation()
rtiNumberOfObjectInstaces()
rtiProvideAllObjectInstacesRemote()
rtiProvideAllObjectInstacesRemote(RTI::ObjectClassHandle)
rtiProvideAllObjectInstacesRemote(const char *classname)
rtiRegisterObjectInstance()
rtiRemoteObjectClassHasJoined(const char *className)
rtiRemoteObjectClassHasPublished(const char *className)
rtiRequestAllAttributeValueUpdates()
rtiResignFromFederation()
rtiResume_RTI_Ticks()
rtiSendInteraction(const char *InteractionClassName)
rtiSetInteractionParameterValue(const char *paramName, const void *data)
rtiSetInteractionParameterValue(const char *iClassName, const char *paramName, const void
*data)

15

rtiSetInteractionParameterValue(const char *iClassName, const void *data, int len)
rtiSetInteractionParameterValue(RTI::ParameterHandle a, const void *data)
rtiSetInteractionParameterValue(RTI::ParameterHandle a, const void *data, int len)
rtiSetInteractionParameterValue(RTI::InteractionClassHandle ih, RTI::ParameterHandle a,
const void *dataArg)

rtiSetInteractionParameterValue(RTI::InteractionClassHandle ih, RTI::ParameterHandle a,
const void *dataArg, int length)

rtiSetObjectAttributeValue(const char *atribName, const void *data)
rtiSetObjectAttributeValue(const char *atribName, const void *data, int len)
rtiSetObjectAttributeValue(RTI::AttributeHandle a, const void *data)
rtiSetObjectAttributeValue(RTI::AttributeHandle a, const void *data, int len)
rtiSetObjectAttributeValue(RTI::ObjectHandle ObjectInstance, RTI::AttributeHandle a, const
void *data)

rtiSetObjectAttributeValue(RTI::ObjectHandle ObjectInstance, RTI::AttributeHandle a, const
void *data, int len)

rtiSetObjectAttributeValue(const char *ObjClassName, const char *AttrbName, const void
*dataArg)

rtiSetObjectAttributeValue(const char *ObjClassName, const char *AttrbName, const void
*dataArg, int len)

rtiSetObjectClassHandle()
rtiSuspend_RTI_Ticks()
rtiSyncAllHavePublished(const char *object_names[])
rtiSyncAllHavePublished(const char *object_names[], double smallsteptime)
rtiSyncLoopWaitForJoin(const char *object_names[], double smallsteptime)
rtiTick(double timeStep)
rtiTick()
rtiTimeConstrained()
rtiTimeGetFederationTime()
rtiTimeGetLookaheadTime() [inline]
rtiTimeIncrementTime(double timeStep)
rtiTimeRegulated()
rtiTimeSetLookaheadTime(double t)
rtiTimeSetTimeConstrained(bool turn_on)
rtiTimeSetTimeRegulating(bool turn_on)
rtiTimeSetTimeRegulating(bool turn_on, double LookaheadTime)
rtiTimesSet(const char *interactionClassName, const char *paramName)
rtiTimesSet(const char *InteractionClassName)
rtiUpdate()
rtiUpdate(RTI::ObjectHandle)
rtiUpdatesReceived(const char *SomObjectName) [inline]
rtiUpdatesReceived(const char *SomObjectName, const char *atrbNm) [inline]
rtiUpdatesSent(const char *SomObjectName) [inline]
rtiUpdatesSent(const char *SomObjectName, const char *atrbNm) [inline]
rtiVerbose(bool Io) [inline]

16

rtiVerbose() [inline]
rtiVerboseLogIO(bool Io) [inline]
rtiVerboseTrace(bool Io) [inline]
setFederateID(int id) [inline]
setFederateName(const char *str) [inline]
setFederation_RTI_FedFileName(const char *FileName)
setFederationName(const char *name)
setHLAfcObjectModelName(const char *str) [inline]
sims [static]
soms
~FOM_Object()

17

NO. OF
COPIES ORGANIZATION

 * ADMINISTRATOR
 DEFENSE TECHNICAL INFO CTR
 ATTN DTIC OCA
 8725 JOHN J KINGMAN RD STE 0944
 FT BELVOIR VA 22060-6218
 *pdf file only

 1 DIRECTOR
 US ARMY RSCH LABORATORY
 ATTN AMSRD ARL CI IS R REC MGMT
 2800 POWDER MILL RD
 ADELPHI MD 20783-1197

 1 DIRECTOR
 US ARMY RSCH LABORATORY
 ATTN AMSRD ARL CI OK TECH LIB
 2800 POWDER MILL RD
 ADELPHI MD 20783-1197

 1 AMCOM MRDEC
 ATTN AMSMI RD W C MCCORKLE
 REDSTONE ARSENAL AL 35898-5240

 1 HICKS AND ASSOCIATES
 ATTN G SINGLEY III
 1710 GOODRICH DR STE 1300
 MCLEAN VA 22102

 1 CECOM
 SP & TERRESTRIAL COMMCTN DIV
 ATTN AMSEL RD ST MC M H SOICHER
 FT MONMOUTH NJ 07703-5203

 1 US ARMY INFO SYS ENGRG CMND
 ATTN ASQB OTD F JENIA
 FT HUACHUCA AZ 85613-5300

 1 US ARMY NATICK RDEC
 ACTING TECHNICAL DIR
 ATTN SSCNC T P BRANDLER
 NATICK MA 01760-5002

 1 US ARMY RESEARCH OFC
 4300 S MIAMI BLVD
 RSCH TRIANGLE PARK NC 27709

 1 US ARMY SIMULATION TRAIN &
 INSTRMNTN CMD
 ATTN J STAHL
 12350 RESEARCH PARKWAY
 ORLANDO FL 32826-3726

NO. OF
COPIES ORGANIZATION

 1 US ARMY TANK-AUTOMOTIVE &
 ARMAMENTS CMD
 ATTN AMSTA AR TD M FISETTE
 BLDG 1
 PICATINNY ARSENAL NJ 07806-5000

 1 US ARMY TANK-AUTOMOTIVE CMD
 RD&E CTR
 ATTN AMSTA TA J CHAPIN
 WARREN MI 48397-5000

 1 US ARMY TRAINING & DOCTRINE CMD
 BATTLE LAB INTEGRATION & TECH DIR
 ATTN ATCD B J A KLEVECZ
 FT MONROE VA 23651-5850

 1 CDR US ARMY AVIATION RDEC
 CHIEF CREW ST R7D N BUCHER
 MS 243-4
 AMES RESEARCH CTR
 MOFFETT FIELD CA 94035

 1 ITT INDUSTRIES
 ATTN M O’CONNOR
 600 BLVD SOUTH STE 208
 HUNTSVILLE AL 35802

 1 DIR US ARL
 ATTN AMSRD ARL SL EP G MAREZ
 WHITE SANDS MISSILE RANGE NM 88002

 1 DIR US ARMY TRAC
 ATTN ATRC WE L SOUTHARD
 WHITE SANDS MISSILE RANGE NM 88002

 3 DIR US ARMY TRAC
 ATTN ATRC WEC J AGUILAR
 C DENNY D DURDA
 WHITE SANDS MISSILE RANGE NM 88002

 3 CDR TARDEC
 ATTN AMSTA TR D M/S 207
 FSCS R HALLE G SIMON
 WARREN MI 48397-5000

 3 CDR ARDEC
 ATTN AMSTA AR FSS J CHU
 D MILLER B DAVIS
 PICATINNY ARSENAL NJ 07806-5000

18

NO. OF
COPIES ORGANIZATION

 2 JOINT VIRTUAL BATTLESPACE
 ATTN J McDONALD J GARCIA
 10401 TOTTEN ROAD
 BLDG 399 SUITE 325
 FT BELVOIR VA 22060-5823

 1 US SBCCOM
 NATICK SOLDIER CTR
 ATTN AMSSB RSS MA (N) D TUCKER
 KANSAS STREET
 NATICK MA 01760-5020

 1 HQ OPERATIONAL TEST CTR
 ATTN CSTE OTC MA S J HAMILL
 BLDG 91012
 FT HOOD TX 76544-5068

 1 SANDIA NATIONAL LABORATORIES
 ATTN: M J McDONALD
 PO BOX 5800 MS 1004
 ALBUQUERQUE NM 87185-1004

 ABERDEEN PROVING GROUND

 1 DIRECTOR
 US ARMY RSCH LABORATORY
 ATTN AMSRD ARL CI OK (TECH LIB)
 BLDG 4600

 1 DIR AMSAA
 ATTN D JOHNSON
 BLDG 248

 2 DIR AMSAA
 ATTN B BRADLEY A WONG
 BLDG 367

 3 DIR AMSAA
 ATTN D HODGE P NORMAN
 K STEINER
 BLDG 392

 5 US ARMY RESEARCH LABORATORY
 ATTN AMSRD ARL WM BF
 S WILKERSON
 G SAUERBORN (4)
 BLDG 390

 6 US ARMY RESEARCH LABORATORY
 ATTN AMSRD ARL SL BE L BUTLER
 R BOWERS C KENNEDY
 J ANDERSON T CHRISTY
 E GREENWALD
 BLDG 238

NO. OF
COPIES ORGANIZATION

 4 US ARMY RESEARCH LABORATORY
 ATTN AMSRD ARL SL BB R SANDMEYER
 P TANENBAUM B WARD
 W WINNER
 BLDG 328

 1 US ARMY RESEARCH LABORATORY
 ATTN AMSRD ARL SL BE L ROACH
 BLDG 328

 3 US ARMY RESEARCH LABORATORY
 ATTN AMSRD ARL CI CT G MOSS
 M THOMAS P JONES
 BLDG 321

 1 US ARMY RESEARCH LABORATORY
 ATTN AMSRD ARL CI CT F BRUNDICK
 BLDG 1116A

 1 DIR USARL
 AMSRD ARL WM W J SMITH
 BLDG 4600

 1 DIR USARL
 AMSRD ARL WM BA D LYON
 BLDG 4600

